

Completion and Wellbore Geomechanics in High Stress Settings

Jonathan McKenna, PhD

Orlando Teran

Ruth Ehlich

Global Tectonics and Wellbore Design

Proximity to convergent plate boundaries can be one of the most important factors controlling treatment design and wellbore stability

Microseismic Geomechanics – Vaca Muerta Example

- Did not observe textbook "hydraulic fractures"; majority of stimulation reactivated large scale faults
- Wells and completions were designed to "Texas standards"
- Initial design based on normal faulting stress regime

Microseismic Geomechanics – Identifying Failure Plane

Microseismic Geomechanics – True Failure Plane

Fault Likelihood and Fault Plane

Sonic Log versus Microseismic Stress Models

Sonic Log versus Microseismic Stress Models

Sonic Log versus Microseismic Stress Models

Summary

- Microseismic focal mechanisms are very sensitive to in situ stress and can be used to quantify the tectonic stress field
- Equations used to derive stress values from sonic logs appear to fail in highly compressive stress fields (i.e. SHmax is the max principal stress)

