Microseismic Interpretations and Applications: Beyond SRV

Reference: SPE 168596

Craig Cipolla, Hess Corporation

MicroSeismic, Inc. User Group Meeting Wednesday, February 19, 2014

Stimulated Reservoir Volume (SRV)

- First introduced by Fisher et al. (2004), Barnett Shale.
 - Fracture growth may be much more complex in unconventional reservoirs.
 - Microseismic volume could be correlated to production in specific areas.

Stimulated Reservoir Volume (SRV)

- Further defined by Mayerhofer et al. (2008)
 - Drainage volume may be limited to SRV.
 - Fracture area is a key factor that controls productivity.

Figure 11 from SPE 119890

SRV-based Production Models

The Missing Link

The relationship between fracture *geometry and conductivity* and *well productivity and drainage volume*.

Reference: SPE 168596

What is Stimulated Reservoir Volume (SRV)?

- Completion/Fracturing Engineers
 - Microseismic volume
 - Fracture geometry
 - Maximum drainage distance
- Reservoir Engineers
 - Drainage volume or area
 - Stimulated region permeability, k_{srv}
 - Effective fracture length

Focus on Microseismic

Focus on Production

Beyond SRV

Natural Fractures (DFN)

Stress Regime (3D MEM)

Network Fracture Model

Complex Hydraulic Fractures

calibration using microseismic data

Beyond SRV

Complex Hydraulic Fractures

- Discretely grid the complex hydraulic fracture
- Propped and un-propped fractures
- Stress sensitive fracture conductivity

Numerical Reservoir Simulation

Maintain the fidelity between the hydraulic fracture model and numerical reservoir simulation

Pressure distribution at 10-years

Shale Gas Example: Microseismic

~4500 ft Lateral

Cased & Cemented, Plug & Perf, 4 clusters/stage, 70 bpm Hybrid Treatment Design: 12% 100-mesh, 75% 30/50 ceramic, 13% 20/40 ceramic

15 stages 109,000 bbls 4,400,000 lbs

P _i =	7650	psi
Ø=	4.7	%
Gas GR=	0.65	
h=	132	ft
T _r =	180	°F

Reference: SPE 168596

Shale Gas Example: Microseismic Volume

SRV/ESV = $1800 \text{ MM} \text{ft}^3$

Planar Fracture Model

Total fracture area = 36 MM ft^2 Total propped area = 13 MM ft^2

Fracture area-pay = 14 MM ft^2 Propped area-pay = 5 MM ft^2

Microseismic observation well

Fluid Efficiency ~ 76%

Planar Fractures Matched to MSM

Complex Fracture Modeling: 50 ft DFN

Complex Fracture Modeling: 50 ft DFN

50 ft DFN

Total fracture area = 29.7MM ft² Total propped area = 8.4MM ft²

Fracture area-pay = $16.1MM ft^2$ Propped area-pay = 3.7MM ft²

Average x_f

~ 400 ft

Proppant ~ 0.5 lb/ft² concentration

Fluid Efficiency ~ 74%

Complex Fracture Modeling: 50 ft DFN

Production Modeling

Shale Gas Example 15 stages, 4 clusters/stage 4,571 kgal, 4,430 klbs

Reservoir Simulation Model Grid: 50-ft DFN

Discrete gridding of the hydraulic fracture maintains the fidelity between the fracture model and reservoir simulation

Honor fracture model distribution of propped fracture conductivity and un-propped fractures

Un-Propped Conductivity

Network Fractures and Planar Fractures

Understanding matrix permeability is important

50-ft DFN – Base Case Forecast

Un-propped conductivity may be a key factor when optimizing well spacing

50 ft DFN (UPC~0)

Un-propped conductivity may be a key factor when optimizing well spacing

Stage Spacing

15 stages, 4 clusters/stage 4,571 kgal, 4,430 klbs

versus

8 stages, 4 clusters/stage 2285 bbls, 2,215 klbs

Effect of Stage Spacing: 10-yr Recovery

Fracture Complexity & Stage Spacing

1-year 8 7 6 **1-year Gas (BCF)** Fracture morphology may significantly impact optimum 8-stages stage spacing 18% 24% 69% 15-stages 10-years 1 0 8 50-DFN 75-DFN Planar 38% 7 **Fracture Geometry** 17% 10-year Gas (BCF) 6 18% 5 4 8-stages More Incremental production 3 15-stages 2 for planar fractures 1 0 50-DFN 75-DFN Planar **Fracture Geometry**

Tight Oil Example Microseismic Data: ~3000 ft section

Un-cemented ball-drop completion with swell packers 45 bpm,1600 bbl XL-gel, 110,000 lbs 20/40 ceramic proppant (per stage)

333 ft spacing (30 stages/10,000 ft)

Stage spacing changes fracture complexity and "apparent" system permeability (k_{srv})

192 ft spacing (52 stages/10,000 ft)

Stage spacing changes fracture complexity and "apparent" system permeability (k_{srv})

Linear Flow Analysis: Network Fractures and Stage Spacing

Fracture Complexity and Permeability Assumptions Effect Optimum Stage Spacing

Stage Spacing (ft)

Conclusions

- The interpretation and application of microseismic images should include mass balance and fracture mechanics.
- Integrating fracture modeling, microseismic data, and production modeling may be required for completion optimization.
- RTA and LFA can provide important insights into well performance, but k_{srv} and x_f may not be appropriate for completion optimization.
- Changes in stage spacing and fracture treatment design will likely result in different "apparent" permeability or k_{srv}.

